special start of the year offer

Hours
Minutes
Seconds

How automation agents can revolutionize sales

automation agents 01

Estimated reading time: 8 minutes

The advent of automation has opened up a world of possibilities for startups and businesses of all sizes. Automating repetitive tasks with automation agents allows entrepreneurs to focus on more strategic aspects of their operations.

One particularly powerful use of automation is in the sales process, where no-code solutions can streamline customer interactions, making sales seamless and highly efficient. Learn how this type of automation works and how it can be implemented in a no-code startup.

Understanding Automation Agents

The automation agent is a sales bot that can sell almost anything, as long as it is fed the right instructions and product details. This flow is fully automated, handling everything from customer inquiries to generating payment links and sending them to customers to complete their purchases.

Check out everything this sales agent can do:

  • Dealing with customer queries and providing information about products or services.
  • Guide the customer through the sales funnel.
  • Generate custom payment links and send them to customers.
  • Process payments and track the status of each transaction.
  • Operate 24/7, ensuring sales can be made at any time without manual intervention.

This type of automation is a game-changer for small businesses, startups, and even larger enterprises looking to scale their processes. But what makes this automation agent particularly powerful is its no-code architecture. Which means it can be built and customized without extensive programming knowledge.

Building Sales Automation Agents Without Code

The automation agent can, for example, be hosted on WhatsApp, making it accessible and easy to use for customers. Check out the steps for building an agent using tools NoCode and exploring the architecture that powers it.

1. Choosing the right tools

To build a functional sales automation agent, the following tools are essential:

  • Frontend (customer interface): In this case, the frontend is WhatsApp, where the customer interacts with the agent. WhatsApp is a widely used communication tool, which makes it a natural choice for companies looking to automate customer interactions.
  • Backend (Data Storage and Logic): The backend stores and processes all data related to the product, customer, and sales transactions. For example, the agent can use the Supabase as your database, which stores product details, user information, and order status.
  • Integrations (third-party services): A key part of this agent's functionality comes from its integrations. It integrates with services such as n8n to automate workflows.

2. Understanding the flow of automation agents

The flow starts when a potential customer sends a message to the company’s WhatsApp number. The automation agent is ready to respond immediately. Here’s what happens next:

  • Customer Inquiry: The agent asks the customer what they are interested in. For example, the user may ask about the details of a specific course.
  • Fetching product information: The automation agent then fetches details about the course from the Supabase database and displays them to the customer. This may include the course title, pricing, and available dates.
  • Going to purchase: the customer indicates that they want to purchase the course. The agent then asks for any missing information, such as their CPF, which is necessary to process the transaction.
  • Generating payment link: Once the customer confirms their purchase intention, the agent uses the ASAAS API, for example, to generate a personalized payment link. This payment link is then tied to that specific customer and transaction.
  • Processing payment: The customer clicks the link and completes the payment. The agent tracks the payment status and updates the database when the payment is successful.

3. Integrating AI for Enhanced Customer Interactions

Artificial intelligence plays a crucial role in this automation agent, enabling it to understand customer queries and respond appropriately. The agent can use OpenAI's GPT models for natural language understanding and response generation. In this way, this integration of AI sales agents ensures that the agent can handle a wide range of customer queries, providing relevant information based on the input it receives.

Additionally, AI can be trained to remember previous interactions, making future conversations smoother. For example, if a repeat customer asks about a previous order, the agent can retrieve that information from the database and provide a personalized response.

4. Personalizing the sales experience

One of the most interesting aspects of this no-code automation is its flexibility. You can use the same automation flow to sell a wide variety of products or services. This means you can customize the system to handle:

  • Physical products: For example, a clothing retailer can use the automation agent to handle queries about available inventory, sizes, and shipping options. The agent can generate payment links for customers and track order status.
  • Digital products: In the case of digital products like courses or software, the agent can handle everything from providing product descriptions to granting access to the product after payment.
  • Services: Businesses that offer services, such as consulting or coaching, can also benefit from this type of automation. The agent can schedule appointments, handle payments, and send reminders to customers.

5. Why NoCode is the Future of Automation

One of the main highlights of this automation agent is the fact that you can create it using no-code tools. This is a huge advantage for startups and small businesses that don’t have the resources to hire dedicated developers. So, with platforms like n8n and Supabase, companies can create complex workflows without writing a single line of code.

  • Rapid development: No-code platforms enable rapid prototyping and deployment. Companies can quickly create and test new automation flows, making it easier to iterate and improve over time.
  • Cost-effective: Traditional software development can be expensive, especially for startups. By using no-code solutions, companies can reduce their development costs and allocate those resources elsewhere.
  • Scalability: No-code solutions are highly scalable. As your business grows, you can adjust your automation workflows to handle more customers, products, or services without having to rebuild your system from scratch.

The Future with Sales Automation Agents

This shift toward automation doesn’t just save time and resources; it also improves the customer experience. With an automation agent handling inquiries, payments, and order fulfillment, customers get faster responses. This means businesses can operate 24/7 without the need for human intervention.

In conclusion, no-code automation agents are an invaluable tool for startups looking to scale their sales processes. Therefore, by leveraging platforms like WhatsApp, Supabase, and OpenAI, companies can create highly personalized and efficient sales flows that operate 24/7. Want to learn more? Join the MasterClass AI Agent Manager!

org

Watch our Free MasterClass

Learn how to make money in the AI and NoCode market, creating AI Agents, AI Software and Applications, and AI Automations.

Neto Camarano

Neto specialized in Bubble due to the need to create technologies quickly and cheaply for his startup. Since then, he has been creating systems and automations with AI. At the Bubble Developer Summit 2023, he was listed as one of the greatest Bubble mentors in the world. In December, he was named the largest member of the global NoCode community at the NoCode Awards 2023 and first place in the best application competition organized by Bubble itself. Today, Neto focuses on creating AI Agent solutions and automations using N8N and Open AI.

Also visit our Youtube channel

Learn how to create AI Applications, Agents and Automations without having to code

More Articles from No-Code Start-Up:

The WhatsApp API is one of the main solutions for companies that want to scale their customer service and communication automation. 

WhatsApp, being one of the most popular messaging apps in the world, allows direct and efficient interactions with customers. However, when it comes to automation and integration, using the WhatsApp API becomes essential.

So, there are two main options for this integration: the Official WhatsApp Business API and the Unofficial APIs. But which one should you choose? 

In this article, we’ll explore the differences, advantages, disadvantages, pricing models, and costs to help you make the best decision for your project. Keep reading and find out which WhatsApp API makes the most sense for your business!

Types of WhatsApp available on the market: discover the options

types of whatsapp available in the market

Before we talk about WhatsApp APIs, it is important to understand the three main types of WhatsApp available:

Personal WhatsApp

WhatsApp Personal is the traditional version of the app, used by billions of people around the world. Intended for individual users, it does not include business-oriented features or automation.

WhatsApp BusinessVersion 

Version aimed at small and medium businesses. This version has features such as a product catalog, automatic messages and business profiles, but still relies on manual interactions. 

Furthermore, it allows the simultaneous use of two numbers on the same device, one in the personal application and the other in the Business application, in a completely legal manner and in line with Meta's guidelines.

WhatsApp Business API

Unlike previous versions, WhatsApp Business API is not an application, but a cloud-based solution that allows WhatsApp integration to different systems, enabling automation and personalization of interactions.

Companies that manage a large volume of messages use this API to optimize communication with customers, ensuring efficiency and scalability. With this solution, it is possible to:

  • automate the sending of messages and notifications;
  • to create chatbots for customer service;
  • integrate WhatsApp with CRMs, ERPs and other business platforms;
  • use artificial intelligence to personalize interactions.

How does the WhatsApp Business API work?

The WhatsApp Business API acts as a bridge between different systems, allowing softwares to communicate automatically. Since it is not an application installed on the cell phone, the entire operation takes place in the cloud, ensuring scalability and reliability for companies that need high-performance communication.

Although initially aimed at developers, today there are several solutions that simplify the implementation of the WhatsApp Business API, making it accessible to companies of different sizes.

Now that we understand the concept, let's explore the differences between the Official WhatsApp API and Unofficial WhatsApp APIs.

Official API vs. Unofficial API: Know the main differences

official api vs unofficial api differences

Businesses can choose between two types of WhatsApp API for integration:

  • Official WhatsApp Business API (provided directly by Meta or licensed companies);
  • Unofficial APIs (provided by third parties, without any connection to Meta, but within the law).

Next, we will understand the main differences between them.

Official WhatsApp Business API

The Official WhatsApp Business API is provided by Meta (Facebook) itself or by licensed companies. Meta recently began offering this service directly to end users, without the need for licensed intermediaries. 

This API can be integrated directly via Facebook's Business Manager (BM), ensuring security and compliance with Meta's policies. Among the main features of the Official API:

  • integration via Facebook Business Manager;
  • mandatory use of pre-approved message templates to start conversations;
  • billing based on conversations initiated;
  • restriction on sending messages outside of Meta's rules;
  • lower risk of blocking, as long as you follow the guidelines/

Please note that Meta does not allow unrestricted sending of messages. To start a conversation, it is mandatory to use approved message templates, ensuring that the contact complies with WhatsApp policies. The template categories are:

  • marketing: promotions, coupons and offers;
  • utility: order confirmations, delivery tracking;
  • authentication: sending verification codes;
  • service: user-initiated messages at no additional cost.

After the first template is sent, the conversation can continue normally for up to 24 hours without the need for a new template.

And how does billing work on the Official API?

The pricing for the Official WhatsApp API is based on conversations initiated and varies depending on the message category:

  • marketing messages: about R$ 0.36 per conversation started;
  • utility messages: approximately R$ 0.04 per conversation initiated;
  • authentication messages: around R$ 0.015 per conversation initiated;
  • client initiated messages: at no additional cost.

Other important points about billing include the 24-hour validity for each conversation initiated by the company, which means that if it is necessary to continue the interaction after this period, a new paid template will be required. 

Additionally, starting in April 2025, authentication and utility messages sent within this 24-hour window will no longer be charged.

Unofficial APIs

Unofficial APIs are solutions offered by third parties, with no direct relationship with Meta. Although they are not licensed, many of these APIs are completely legal and follow security standards. The main characteristics of Unofficial APIs include: 

  • simplified integration via QR Code;
  • allows sending messages without the need for pre-approved templates;
  • fixed price per integrated WhatsApp number;
  • greater flexibility for shipping and automation;
  • higher risk of ban in case of spam or inappropriate use.

Unlike the Official API, which requires template approval and follows strict rules, Unofficial APIs allow messages to be sent freely, without category restrictions or prior approval. This allows for more dynamic contact with customers, ideal for companies that need freedom in communication.

And how does the billing work? Unofficial APIs?

The pricing of Unofficial APIs varies depending on the provider. Some operate with fixed monthly plans, while others charge per connected WhatsApp number.

  • some companies offer plans starting from R$99 per integrated WhatsApp number;
  • others offer packages for multiple numbers, reducing the cost per account;
  • There are open-source options, which can be used free of charge, but require their own infrastructure.

Despite the freedom offered by Unofficial WhatsApp APIs, it is essential to consider the risks involved. Since there is no direct link to WhatsApp, these APIs are more prone to blocking, especially when used for mass sending without the proper consent of users.

Furthermore, Meta support and warranty are not available, which means that any technical issues or blockages will depend solely on the API provider.

Sending messages without the recipients' authorization can also result in restrictions, compromising the company's continued communication with its customers.

So which API to choose?

which whatsapp api to choose

Choosing between the Official WhatsApp API and Unofficial WhatsApp APIs depends on your business needs. While the Official API provides greater security and compliance, Unofficial APIs offer more freedom and predictable costs.

Evaluate your options based on your message volume, need for automation, and level of risk you are willing to take.

To learn more about automation and other efficient strategies for integrate chatbots, automatic notifications and artificial intelligence to your business, explore more at our YouTube channel and in the NoCode StartUp website.

Artificial intelligence is transforming the way we interact with technology, and AI agents are one of the most powerful advancements in this area. However, to make these agents truly effective, it’s essential to train them with data specific to your business.

In this article, we will explore how to create an AI agent using the RAG technique (Retrieval-Augmented Generation) to train models with custom information. You will learn three practical ways to implement this in your own project. 

Ready? Happy reading! 

What is an AI agent and how does it work with RAG?

What is an AI agent and how does it work?

Before we get into the practical part, it is important to understand the concept of an AI agent and how it can be improved using RAG.

Basically, an AI agent is a system that can interpret commands, process information, and generate responses autonomously. To do this, it needs three fundamental elements:

  • AI model: the agent is based on models such as GPT, Llama or Claude, responsible for interpreting and generating text based on learned patterns;
  • Base prompt: these are the instructions that define how the agent should behave and structure its responses;
  • memory: essential for AI to remember previous interactions. Some agents have both short-term and long-term memory, allowing the conversation to continue.

In addition to these features, an AI agent can be even more efficient when using the RAG (Retrieval-Augmented Generation) technique, as we mentioned earlier. This means that, instead of relying exclusively on the model's prior knowledge, it can query external databases, such as documents, PDFs, Notion pages, or spreadsheets. 

In this way, an agent trained with RAG becomes an expert in specific content, ensuring more precise and contextualized responses.

Method 1: Creating an agent with Dify

method 1 creating an agent with dify

Now that you understand the basics, let's get to the practical part: how to create an AI agent trained with your own data!

One of the easiest and most effective ways to create a RAG-trained agent is by using Difyi. This tool allows you to integrate knowledge bases into your assistant quickly and intuitively.

To train your agent at Dify, follow the step by step below:

  • access the “Knowledge Base” tab within the Dify platform;
  • upload your documents, such as PDFs, HTML files, spreadsheets or web pages;
  • Dify processes the files and transforms them into numeric vectors, converting the textual content into a format that AI can interpret efficiently.

This process is known as embedding, in which the tool structures the data on a vector basis, allowing the AI to search and retrieve the most relevant information whenever a question is asked.

Additionally, Dify makes it easy to create virtual databases by organizing knowledge into chunks of information. This way, when a user asks the agent a question, the agent quickly identifies which chunk of text best fits the desired answer.

With Difyi, you can create specialized agents for different purposes, such as:

  • customer support assistants, who access FAQs and technical manuals;
  • customer service chatbots, which answer questions about products and services;
  • sales agents, which use strategic information to personalize approaches.

The best part? Dify automates this entire process behind the scenes, making implementation simple and practical.

Method 2: Creating an agent with OpenAI Assistants and RAG

method 2 creating an agent with openai assistants

Another efficient way to train an AI agent with RAG is to use OpenAI Assistants. This solution allows you to create custom assistants, define specific behaviors, and incorporate documents so that the AI can query and respond accurately.

Unlike Dify, which automates much of the process, OpenAI offers greater control over the agent’s settings. To create your assistant using this tool, follow the steps below:

  • access the OpenAI platform and go to the “Assistants” tab;
  • create a new wizard, defining a name, description and specific instructions;
  • choose an AI model, such as GPT-4 Turbo, to ensure more complete and contextual answers;
  • Upload files that he will use as reference, such as technical manuals, internal documents, or knowledge bases.

When documents are added to the platform, OpenAI transforms this content into a vector database. This way, the agent can consult the information whenever necessary, without relying solely on the model's pre-trained knowledge. 

This allows it to provide more personalized and up-to-date responses without requiring a complete AI re-processing. Additionally, OpenAI manages all the infrastructure needed to store and retrieve this information, making it easy to implement for those who don’t want to set up their own database.

One of the main advantages of this approach is its ease of implementation, as OpenAI takes care of the technical part, making the process simple and intuitive. In addition, the model guarantees high accuracy, combining the power of GPT-4 Turbo with specific information about your business, making the assistant much more effective. 

If your goal is to create a specialized AI agent without having to set up an advanced technical environment, OpenAI Assistants can be a great choice.

Method 3: Creating an agent with N8N and Supabase

method 3 creating an agent with n8n and supabase

The third way to create an AI agent trained with RAG is by using the integration between N8N and Supabase. This approach allows greater control over the data and optimizes the search for relevant information within the vector database.

While tools like Dify and OpenAI Assistants simplify the process, using N8N in conjunction with Supabase offers more versatility and reduces operational costs by allowing the framework to be fully configured and managed within your own environment.

To create an AI agent trained with this combination, follow the steps below:

  • configure the vector database in supabase to store the reference documents;
  • upload the files that the agent will use as a knowledge base, such as manuals, FAQs or technical ebooks;
  • integrate Supabase with N8N to enable AI to query data and provide contextualized answers;
  • develop automated flows in N8N to structure agent interactions with users;
  • optimize agent responses by ensuring that they can access the most relevant blocks of information within the database.

But why use N8N and Supabase? with RAG?

Unlike other solutions, this approach allows for an advanced level of customization and control over the vector database. When a user asks the agent a question, it fetches the most relevant vector of data from Supabase, ensuring that the answer is based on the stored documents.

Additionally, N8N allows you to connect the AI agent to different applications, such as Whatsapp, Slack and Google Drive, expanding the possibilities of use and automation. This flexibility makes the model ideal for companies that need a highly specialized agent.

Among the main advantages of this implementation, the following stand out:

  • greater control over datas, allowing adjustments and customizations as needed;
  • cost reduction, as Supabase replaces paid solutions for vector storage;
  • advanced automation, with intelligent flows and integrations in N8N;
  • scalability, allowing the knowledge base to grow according to business needs;
  • greater efficiency, as the agent accesses information directly from the vector database, without relying solely on the AI model.

If you are looking for flexibility and cost reduction, N8N + Supabase is a powerful solution for training specialized AI agents with RAG.

Conclusion

Training an AI agent with your own data is an essential strategy for obtaining more accurate responses aligned with the context of your business. With RAG, you can transform internal files and documents into structured knowledge for AI, optimizing processes and improving the user experience.

If you want to dive deeper into the topic and learn how to create your own AI agents, check out the complete N8N course at NoCode Startup and take your automation to the next level!

Imagine you have a super-intelligent assistant trained based on all the knowledge available on the internet. However, when it comes to information specific to your business, it may not have direct references. So, how do you overcome this limitation?

One of the most effective ways to improve your assistant's intelligence is to train it with custom data, such as documents, articles, and internal files. 

This technique is known as RAG (Retrieval-Augmented Generation) and allows AI assistants to combine pre-existing knowledge with specific information to provide more accurate and useful answers.

Continue reading to better understand how this approach can transform the use of AI in your business.

How does RAG (Retrieval-Augmented Generation) work?

How does RAG work?

Now that we understand the concept of RAG (Retrieval-Augmented Generation), let's explore how it works in detail. 

Unlike traditional AI assistants that simply generate answers based on previously trained knowledge, RAG searches for information from external sources and combines that data with its prior knowledge to provide more accurate and relevant answers. 

The process can be divided into three main steps:

Ask the AI model

The user asks the AI assistant a question, just as they would in ChatGPT or another traditional chatbot.

Information Search (Retrieval)

The AI assistant queries a specific database, such as PDFs, websites, internal documents, or a business knowledge base. It retrieves the most relevant information to answer the question.

Augmented Generation

With the data retrieved, AI refines and structures the response by combining information from the knowledge base with its own linguistic model. This ensures a contextualized, accurate and relevant response.

This method is highly efficient as it allows AI to provide more personalized responses based on internal data. Additionally, the technology can leverage product documentation, support knowledge bases, and even company policies to ensure accurate and relevant information.

how does rag generation increase work

However, unlike a conventional chatbot, which responds based only on its original training, a RAG model can be constantly updated with new information, without the need for massive retraining.

In other words, this allows the AI to be highly dynamic and evolve progressively as new content is added, ensuring greater accuracy and relevance in responses.

For example, within the NoCode community, we provide assistants that use RAG to answer questions about tools such as make up, Diff, N8N and Bubble.

Furthermore, these assistants have been trained with specific documentation for these platforms, which allows them to provide even more detailed and accurate answers to students, thus facilitating learning and resolving technical queries.

5 Benefits of using RAG

Benefits of using RAG

Now that you understand how RAG works, let's explore the main benefits that this technology can bring to companies and users:

1. More accurate and contextualized responses

RAG enables AI assistants to query up-to-date information in real time, making responses more relevant and detailed.

2. Automation and efficiency

With the ability to access specific knowledge bases, AI reduces the need for constant human support, optimizing time and resources.

3. Continuous learning without the need for retraining

Unlike traditional AI models, which need to be constantly trained and retrained to learn new information, RAG can simply query updated databases.

4. Customization for different businesses

Companies can tailor AI to answer industry-specific questions by training the assistant with technical manuals, internal knowledge bases, and other relevant documents.

5. Applying RAG in customer support

In addition to academic and educational use, companies across a variety of sectors are using RAG to improve customer support.

Imagine a technology company that sells complex softwares. Customers frequently contact support with questions about specific features. 

With an AI assistant trained with RAG, a company can feed the AI with its internal knowledge base, technical manuals, and FAQs. This allows the agent to answer questions accurately and quickly, helping to reduce the need for human intervention and streamline customer support.

How to apply RAG in your business?

Companies from different segments can take advantage of this technology to improve internal processes, customer service and task automation. Below, check out some practical strategies for applying RAG to your business.

1. Identify your company's main needs

Before integrating RAG, evaluate which areas of your business can benefit from this technology. Ask yourself the following questions: 

  • Does customer support receive a lot of repetitive questions?
  • Does your team need to access technical documents frequently?
  • Is there a large database that could be better utilized?
  • Could internal training be optimized with an AI assistant?

2. Choose the right data sources

The great advantage of RAG is its ability to search for information from external sources. To ensure accurate and reliable answers, it is essential to select the best data repositories. Some options include:

  • technical documentation and product manuals;
  • FAQs and internal knowledge bases;
  • articles, research and case studies;
  • structured data from CRMS and ERPS;
  • pdf files, spreadsheets and notion.

3. Integrate RAG with your existing tools

For best results, RAG should be connected to the platforms your team already uses. Some ways to integrate include:

  • Chatbots and virtual assistants: AI trained to answer recurring questions and provide technical support;
  • Management systems (CRM/ERP): AI can access customer data to provide more personalized responses;
  • E-learning and corporate training: intelligent assistants that help employees access learning materials quickly;
  • E-commerce and customer service: chatbots that check inventory, return policies and product recommendations.

4. Evaluate and optimize 

Implementing RAG doesn’t end with the initial setup. It’s essential to monitor AI performance by analyzing metrics such as:

  • response accuracy rate;
  • user satisfaction;
  • reduction of service time;
  • most frequently asked questions and opportunities for improvement.

With this information, you can improve the AI database and ensure that the answers become increasingly accurate.

Conclusion

Whether it’s to improve customer support, automate processes or optimize internal knowledge management, RAG is a powerful and affordable solution for companies in different segments. 

With this technology, AI agents can access specific knowledge bases, improve the user experience and reduce the need for extensive training.

If you want to learn how to create intelligent AI assistants using N8N, check out NoCode Startup's complete course. In it, you will have access to practical training on automation and data integration to make your business' AI even more efficient.

Explore more about the N8N Course – NoCode Startup and start transforming your company with artificial intelligence! 

NEWSLETTER

Receive exclusive content and news for free

premium WordPress plugins
en_USEN
menu arrow

Nocodeflix

menu arrow

Community

Let's start your enrollment

Enter your name and email that you will use to access the content.

IMPORTANT: Do not leave spaces at the beginning or end of fields.