SUPER LAUNCH AI AGENT MANAGER TRAINING 2.0

TAKE ADVANTAGE OF THE SPECIAL OFFER

Hours
Minutes
Seconds

How to make money on the internet by creating no-code apps

how to make money online by creating apps with no code

Estimated reading time: 18 minutes

With the post-pandemic digital business boom, you may have wondered how to make money on the internet and how you can take advantage of this new economy.

In this article we will approach one of the ways, in a little explored niche, the application creation, and we will explain why.

It's no secret that we are in the age of technology. After all, everyone uses some app or software on a daily basis.

With that you can already imagine that this is a market that turns a lot of money. And yet, I can tell you that this is an underexplored niche with many opportunities.

This text is the most important content of this blog. In it, we will show you the essence of what we will seek to bring in content here at No-Code Start-up.

Let's talk about the top 6 ways to make money on the internet by creating apps, and best of all: Not knowing how to program.

As a bonus, I will introduce you to a concept that will change your life: The ladder of prosperity.

Great opportunity to make money online

Well, I'm sure you've heard countless stories of people making a lot of money on the internet, whether through digital marketing with product sales through an online store, digital courses or other means.

All of this intensified even more after the pandemic.

The internet is full of opportunities and it is a market that grows more and more every year.

Working with digital businesses can greatly improve your quality of life, as you can achieve financial freedom, with your own income and geographical freedom, working from home (or traveling).

Well, I think it's pretty clear to everyone that the digital market has a sea of opportunities on how to make money.

How to begin?

One of the main initial decisions is the choice of niche, as you must aim at a market with hot opportunities.

And I'll give you the golden tip! From one of the fastest growing and underexplored niches: Application creation.

Nowadays technology is used to solve thousands of different problems. People and companies need to create software to scale their business.

That's why, currently, the most sought-after professionals on the market are programmers. After all, they are capable of creating technology.

The problem is that to work in the area is an arduous path!

There are years of programming studies, projects and a lot of practical learning to become a good professional. And it's not for everyone...

The good news is that you don't need to know how to program to create apps! All this thanks to no-code, a recent term but with more and more space in the market.

In recent years, dozens of companies creating no-code tools, where we can bring apps to life just by dragging blocks and structuring all the logic behind it.

With the advanced no-code platforms, it is possible to create practically any type of application, from virtual stores, marketplaces and even elaborate SaaS (Software As a Service).

Yea! Today it is possible to create apps and systems without needing a programming language.

Well, without further ado, let's get to know the ways to make money on the internet by creating apps?

The No-Code Start-Up Prosperity Ladder

For that, I want to present a concept that changed my way of thinking and that is our driver here in our content and in our Youtube channel: The Ladder of Prosperity.

It shows how a person can grow their wealth throughout their life. Each step has its challenges and difficulties, but as they are reached, projects become bigger and financial prosperity increases exponentially.

We have also adapted the ladder to the world of nocode, making it easier for you to understand how to make money on the internet with no-code. But come here with me and I'll explain it to you in detail:

Step 1 – Employee

How to make money on the internet by creating apps as an employee no-code

Rung 01 is where most people are or start.

The first step is the traditional work model, where we exchange our hours worked for a salary in a company.

Within the no-code world, we can use it to create powerful automations or internal softwares.

Benefits

  • It is the “easiest” and safest way to start earning money.
  • It's ideal to start with, as you learn essential skills in a professional environment, in a controlled environment.

Considerations

  • As we have limited time, our earnings are also limited – You can even level up and be promoted, but in most cases your financial gain is from the hour worked.
  • It may happen that we do not have financial and geographic freedom depending on the vacancy.
  • In addition, we are subject to all the problems we already know: salary, boss, and all known problems in the business world.

Step 2 – Freelancer No-Code

How to make money with no-code freelance

Climbing up to the next rung is where you work as a no-code freelancer.

In this case you still exchange your working hours for a value, but now you own your own company and perform software development using no-code tools.

There are hundreds of companies, startups and people looking for no-code freelancers, the opportunities are huge.

Benefits

  • Possibility to work more hours and receive more for it. Or work less if you want, have fewer responsibilities (there are no fixed hours).
  • Now you have more professional freedom.
  • You can build a personal brand and increase your ticket.

Considerations

  • Along with freedom comes risk – You have to worry about getting more projects, because you don't have the salary falling normally.
  • Here, in this case, you are still tied to your working hours.

Challenges to climb this step:

  • self management
  • Create a strong personal brand
  • Sales (on a small scale)

Step 3 – Mentoring

How to make money on the internet by creating apps giving mentorships no-code

On step 3 you offer your experience and expertise for consulting sessions in the no-code world.

It requires you to have great technical mastery of what you are proposing to mentor in addition to a strong positioning as a reference to get clients.

Benefits

  • Here you still earn per hour, but usually a much higher amount as it is a specialized service and 1 - 1.
  • You can sell mentorship packages, creating a revenue stream.

Considerations

  • A lot of project experience is required.
  • It's interesting to have a strong personal brand and contact network.

Step 4 – No-code Agency – Software House no-code

How to make money on the internet by creating apps with software house no-code

As a feelancer you manage to run a limited number of projects, it's time to move forward on the ladder of prosperity, expanding the number of projects by creating your own no-code agency.

At this point you have people running the projects for you, so the number of projects under your management can grow.

But big responsibilities such as hiring, people management and process management are starting to be important.

Benefits

  • Expansion and increase in revenue
  • You can outsource services and

Considerations

  • Increased complexity in project management
  • greater responsibility

Challenges to climb this step:

  • Better defined professional processes
  • sales processes
  • Hiring and managing people

Step 5 – Micro-SaaS

Ladder of Prosperity No-Code Start-Up micro-saas no-code

So far, we have dealt a lot with services, which are generally directly linked to hours worked, whether yours or those of your employees.

In this step 05 we start to separate hours worked from the revenue generated with products.

Micro-SaaS is a term that has been gaining strength in recent years, as it is a type of project that requires less effort from the entrepreneur, since it solves a small problem, usually in a specific niche.

As it is a “product”, the word scale starts to make more sense, as your efforts do not grow as the number of customers grows and that is where beauty lives.

Benefits

  • Work with “products” and gain scale
  • Positioning yourself in a micro niche makes it easier to create a valuable product
  • Create systems with less complexity and generate recurring revenue

Considerations

  • Deal validation can be an arduous process and will take many failures to get it right
  • In most cases there is no intention to scale and grow exponentially because here we focus on just one niche.

Step 6 – Startup

No-Code Start-Up Prosperity Ladder

Finally, the last step on the prosperity ladder and one of the ways to make money on the internet with no-code is to create your own Startup.

A startup is nothing more than a business that can scale exponentially and be highly profitable. It can be a SaaS, marketplace, ecommerce, platform or even a digital bank.

Examples of the largest Brazilian startups – Nubank, Gympass, Quinto Andar and Hotmart.

Citing as an example the startup of the founders of No-Code Start-Up (Matheus Castelo and Celso Camarano), you can get to know Ikigai Experience, today the largest digital diving agency in Latin America.

Benefits

  • You can create SaaS / micro SaaS to have recurring income with products.
  • You will be able to exponentially scale your business,

Considerations

  • Increased complexity of creating a successful product
  • It requires great market validation and depending on the niche and solution, high investment.
  • It involves many areas.

Thoughts on the no-code Prosperity Ladder

It is important to comment that one step is not better than the other, each step has its characteristics, strengths and points of consideration.

It's also not because the staircase is divided this way that you need to start at the base and climb the staircase step by step. T

It doesn't mean that you can't be on two steps at the same time.

On your financial journey, ask yourself:

  • What scale do you want to reach? On a financial level
  • What lifestyle do you want? What kind of problems do you want to solve?

This ladder can be applied to many different business niches. However, we strongly believe that the no-code is the most powerful way to move between all these steps!

That's why here at No-Code Start-Up, the ladder of prosperity will be the basis for all our content. It is the core of our business, and our mission is to help you take every step forward with no-code.

Right, but now that we understand the ladder. Let's explore each step further and find out how to make money on the internet by creating applications with no-code?

How to make money on the internet by creating no-code apps

Let's go to the options:

How to make money on the internet by creating apps in a company

Right, but now that we understand the ladder. Let's explore each step further and find out how to make money creating apps?

The first way is to use no-code within companies. In this case we have two possibilities:

1 – If you already work in a company, you can use no-code to create robust automations or create powerful internal softwares for your team.

Examples of internal projects:

  • Automate filling out spreadsheets or sending emails
  • Automate reports
  • Automate communication with customers
  • Create a job portal for hiring

2 – The second way is to look for vacancies in a company that is hiring nocode programmers. It could be to create apps, websites or automations.

As programmer labor is very expensive, many companies are starting to invest in no-code tools. Over the years, the number of vacancies for nocode programmers will explode.

company vacancies

  • bubble programmer
  • Work as a SAP Appgyver (SAP) developer
  • Power apps with many vacancies due to easy access to the tool by companies

Average no-code Bubble 2022 developer salary in Brazil

how much does no-code developer earn?
Source: TV source code

No-code is still new to the business world, but over the years the market will be more and more into the No-Code universe.

How to make money on the internet by creating apps like Freelancer no-code

On the next step, it's time to become a freelancer and earn money on the internet by developing apps and softwares. In this case you can earn money:

  • Creating applications for small regional businesses;
  • Creating Apps for Startups
  • Creating apps for Brazilian No Code Agencies
  • Creating apps for international projects

Here the opportunities are practically limitless! Because there are many companies in need of technology creators, such as startups and no-code agencies.

In Brazil, you can find opportunities as a no-code developer in no-code communities, such as the No-Code Start-Up community itself, positioning yourself as an expert on social networks or partnering with no-code agencies.

In addition, it is also possible to find projects on freelancing platforms such as Upword and Fiverr.

In the international market, the opportunities are even greater, where you can take on projects such as freelancing and earn in dollars.

It is possible to work in partnership with some freelancer platforms focused on no-code such as WeLoveNoCode and Codemap.

And as in Brazil, you can also partner with no-code agencies, such as AirDev, one of the largest no-code agencies in the world.

Make money on the internet by mentoring no-code

On this step you use your knowledge and experience to mentor in the world of nocode

You can mentor:

  • application planning
  • Technical support
  • monetization methods
  • Market strategy

Mentoring is a great way to increase the value of your time. It is a personalized 1-1 service and requires greater expertise in the subject.

In international opportunities, mentoring can reach U$D100 or even U$D150 per hour.

To find opportunities of this type, you need to have a strong personal brand, a good portfolio and start building a network of contacts.

For this, it is important from the beginning of your journey to focus on developing a good portfolio, ideally on your own personal website and developing a relationship of reference on social networks such as Twitter and Linkedin.

Scale your projects and billing with your no-code Software house

On the next step, it's time for you to go a step further and create an Agency. At this stage, it is necessary to organize the house, have good management and sales processes. In addition to knowing how to hire and manage people.

This way, you will be able to multiply your project. As a freelancer, your income will be limited, as you only depend on your own time.

With a No Code Software House you will be able to get more projects, hire developers and manage your company.

To create an agency is a big step, because here, in addition to nocode's skills, you need to have numerous business and people management skills.

There are no shortcuts to creating your own software house no-code, you will need to have gone through the freelancer step or have worked in a company developing applications to increase your chances of success.

Seeking business mentors can be of great help at this stage, after all you are actually setting up a company and a lot of knowledge will now be needed. Mentors can be the fastest way to success.

How to make money on the internet by creating your Micro-SaaS application

A micro-saas must solve a real and clear problem and to be “micro”, it is often specific and niche. They are perfect for creating a less complex project, but which generates a good recurring financial return.

In order to earn money on the internet with your Micro-SaaS, it will be important that you go through the problem and solution validation steps.

You will need to understand well:

  • What problem are you proposing to solve?
  • Who in fact is the main person who suffers from this problem.
  • How big is that market.
  • If there are competitors
  • What sets you apart and why do you

Some examples of Micro-SaaS:

Micro-SaaS is a trending term as it is a business that can be managed with a lean team and allow for a more relaxed lifestyle compared to startups.

You can learn more about this world and ways to earn money on the internet by creating Micro-SaaS applications by following our channel and also the Micro-SaaS community by Bruno Okamoto, space 100% focused on Micro-SaaS.

Create your own startup with no-code

As well as for the development of Micro-SaaS, the no-code fits perfectly for the creation of new startups, as its creative power, innovation and flexibility are impressive.

We believe that in a few years, ALL technology-based startups (applications and softwares) will be born from no-code tools.

With weeks or months we can create applications and softwares. So we can create technology to solve people's problems and have our own startup.

You can create a startup focused on:

  • A SaaS (Software as a Service) or Micro SaaS to solve a specific problem and charge per subscription;
  • An ecommerce to sell products;
  • A Marketplace
  • Or any other technology...

As an example we cite the Ikigai Experience, a digital agency created by Matheus and Neto, fully funded by no-code and which today earns thousands of reais annually from the sale of diving experiences.

To make money with your startup, as well as with your micro-saas, it is important that your idea is validated and solves a real problem.

Many startups die for not finding a “Product Market Fit”, which is nothing more than finding the ideal product for the problem you are trying to solve.

By finding your niche and your “PMF”, your business will have the possibility to scale exponentially.

But we cannot fail to mention that creating a startup is a complete process that requires numerous areas of knowledge and action, not just technology.

I hope this content has opened your mind about the possibilities of how to make money on the internet by creating apps and that you have understood the power of no-code for this.

If you liked this content, be sure to subscribe to our YouTube channel and share this content.

Want to start learning no-code and join this revolution?

Meet our free bubble course and start building complete apps today

How to make money on the internet with no-code?

1. Employee in a company
2. As a freelancer
3. Giving mentorships no-code
4. Creating your software house no-code
5. Creating your micro-saas
6. Creating your start-up

What is the no-code prosperity ladder?

Concept created by No-Code Start-Up that demonstrates the possible paths for a no-code professional.

Each path has its benefits and consideration points, generating different levels of income and lifestyles.

Additional Content:

org

Watch our Free MasterClass

Learn how to make money in the AI and NoCode market, creating AI Agents, AI Software and Applications, and AI Automations.

Matheus Castelo

Known as “Castelo”, he discovered the power of No-Code when he created his first startup entirely without programming – and that changed everything. Inspired by this experience, he combined his passion for teaching with the No-Code universe, helping thousands of people create their own technologies. Recognized for his engaging teaching style, he was awarded Educator of the Year by the FlutterFlow tool and became an official Ambassador for the platform. Today, his focus is on creating applications, SaaS and AI agents using the best No-Code tools, empowering people to innovate without technical barriers.

Also visit our Youtube channel

Learn how to create AI Applications, Agents and Automations without having to code

More Articles from No-Code Start-Up:

The use of a AI agent for shopping is becoming a strategic necessity for e-commerce companies, purchasing managers and technology and innovation professionals.

This technology makes it possible to automate processes, reduce costs and improve strategic decisions in corporate acquisitions.

Want to understand in detail how these autonomous AI agents work in practice? Check out this detailed article from SAP, which provides concrete examples of how agents select suppliers and generate orders automatically: What are AI agents?.

What is an AI agent for shopping
What is an AI agent for shopping

What is an AI agent for shopping?

An AI agent for procurement is an advanced software designed to automate and optimize processes related to the procurement of goods and services.

It combines artificial intelligence, machine learning, and automation to perform tasks that would normally be done manually.

These agents can act as a virtual assistant for e-commerce, recommending products and facilitating recurring purchases.

Furthermore, they function as a AI chatbot for product recommendation, offering real-time support to managers and internal teams.

How does the application of AI in the purchasing process work?

The application of AI in purchasing mainly involves the automatic collection and analysis of large volumes of data, including purchasing history, supplier behavior, market prices and internal demands.

Want to better understand how these technologies help reduce costs and make more efficient decisions in practice? Check out real examples in IBM's detailed article on How AI optimizes processes in the purchasing sector.

Using this data, the agent suggests ideal suppliers, automatically negotiates better prices, and generates personalized recommendations for new purchases. In addition, it can anticipate future demands and avoid stock shortages, always maintaining ideal supply levels.

Advantages and benefits for companies
Advantages and benefits for companies

Advantages and benefits for companies

Implementing an AI agent brings measurable benefits to organizations:

Cost reduction

Companies report reductions of up to 25% in procurement-related operational costs after implementing intelligent agents. This is due to the automation of manual processes and improved negotiation capabilities through data analysis.

Increased productivity

Intelligent agents reduce time spent on repetitive tasks, allowing teams to focus on strategic activities, increasing productivity by up to 35%. See more details in the article Tips on the benefits of AI in Procurement.

Better strategic decisions

With AI technology to optimize purchasing decisions, companies can make more assertive decisions, based on predictive analysis and historical behavior.

Greater compliance

AI agents also help with compliance by ensuring that all acquisitions follow internal standards and policies, reducing audit risks and fines.

Practical examples and use cases

A retail chain adopted an AI agent to monitor inventory in real time, allowing them to predict demand more accurately. This reduced stockouts and saved thousands of dollars annually.

In the pharmaceutical sector, AI agents automate the renewal of contracts and recurring orders, speeding up administrative processes and reducing manual errors.

Another successful application is in large e-commerces, where agents act by automatically recommending products to customers based on history and preferences, boosting sales.

Want to see how companies like Zara and Coca-Cola are applying AI to their purchasing operations and achieving great results? Read this full report on the DataCamp blog.

Future trends and integration with other technologies
Future trends and integration with other technologies

Future trends and integration with other technologies

The future of AI agents for purchasing is highly integrated with other emerging technologies. They already connect to ERP systems, automation platforms such as n8n, Make and generative AI tools such as Dify.

The trend is for these agents to become increasingly personalized and autonomous, creating specific solutions for each company and sector.

This integration promises to make purchasing operations even more efficient and free of bottlenecks. Learn more about trends in Electronic Market.

AI Agent FAQs

How to use AI in the purchasing sector?

To use AI, simply implement an agent connected to the company's current systems, such as ERP and CRM, and allow it to learn from the data.

With this, it can automate purchases, manage suppliers and recommend strategic decisions automatically.

How much does an AI agent earn?

The term “AI agent” refers to the technology, not a specific professional. However, managers who operate these solutions can earn salaries ranging from R$14,000 to R$14,000, depending on their level of experience and responsibility.

What AI agents are there?

The main types are:

  • Shopping: Automate tasks such as quotation, supplier selection, order generation and inventory control. These agents optimize time and reduce errors in purchasing decisions.
  • Customer service: responsible for interacting with consumers via chat, voice or email, offering automated support, resolving queries and speeding up service based on the user's history and intention.
  • Human Resources: They assist in processes such as CV screening, interview scheduling, performance analysis and organizational climate management, promoting greater agility and efficiency in the sector.
  • Financial management: perform tasks such as bank reconciliation, cash flow forecasting, automatic expense classification and budget control, offering greater precision and agility in corporate finance management.
  • Customer onboarding: They work on the automated reception of new customers, guiding them through initial processes, such as registration, account activation, explanations about products or services and integration with platforms, ensuring a fluid and fast experience from the first contact.

How much does an AI agent cost?

The cost of implementing an AI agent can vary significantly based on the complexity of the solution and the integrations required.

Popular SaaS platforms like IBM Watson or Pipefy offer plans starting at R$200 per user per month.

Highly customized projects, involving integrations with ERPs, CRMs and intensive use of generative AI, can easily exceed R$20 thousand per month.

If you want an economical and efficient alternative, consider investing in your own training.

NoCode Startup's specialized training teaches you how to develop your own AI agents to automate purchasing processes, customize flows and save money with tailored solutions. Find out how to become an AI Agent Manager here.

Why Your Business Needs an AI Agent Now

In a scenario where efficiency, speed and assertiveness are increasingly required in purchasing areas, having an AI agent is no longer a differentiator but has become a strategic pillar.

This technology transforms the way your company negotiates, anticipates demands and makes critical decisions.

The digital revolution has arrived in full force in the classroom — and now, artificial intelligence (AI) is at the center of this movement. With the growing demand for effective solutions, AI for educators has become one of the most promising areas of educational innovation.

Educators who master these tools not only save time, but can also offer more personalized and effective learning experiences. But after all, what is the best AI for teachers? How can it be applied in everyday school life without complications? And most importantly: how does it directly benefit students?

In this article, you’ll discover the key AI technologies, tools, and agents that are transforming the education landscape — plus practical recommendations you can apply right now.

What is AI in education and why should you, as an educator, understand it?

Artificial intelligence in education refers to the use of algorithms and intelligent agents to facilitate, personalize, or automate teaching and learning tasks. This includes everything from creating lesson plans to monitoring student performance in real time.

AI tools enable:

  • Reduce time spent on administrative tasks;
  • Customize activities according to each student’s profile;
  • Create assessments and interactive content automatically;
  • Optimize pedagogical planning and classroom management.

Meet the: Agents with OpenAI Course by No Code Start Up

How does AI help teachers in practice?

How AI helps teachers in practice
How AI helps teachers in practice

AI helps educators on multiple fronts:

  • Lesson planning: Tools like Canva Magic Write and Curipod are transforming the way educators prepare their lessons. Instead of starting from scratch, simply input a topic or objective and these tools generate a complete teaching structure — with an introduction, development, interactive exercises and conclusion.

    This allows for more efficient preparation, saving hours of work. In addition, these resources ensure alignment with curricular guidelines, such as the BNCC, and offer visual and methodological suggestions adapted to the class profile.

    Personalization is one of the biggest benefits: the teacher can easily adjust the suggestions to the reality of the classroom and the students' learning level.
  • Content creation: Generative agents such as ChatGPT, Claude and Eduaide.Ai allow teachers to develop a wide range of pedagogical content quickly and efficiently.

    With just a few commands, you can generate explanatory texts on any subject, create thematic summaries, build interactive quizzes with automatic feedback and even script visual presentations for use in the classroom or in remote teaching.
  • Assessment automation: Correcting and preparing assessments has always required time and attention from teachers — but with the use of AI-based tools, this process becomes much more agile and reliable.

    Platforms like Gradescope allow you to upload scanned tests and apply previously defined correction criteria, generating instant results with a high degree of accuracy.

    Tools such as ChatGPT can help create essay questions, multiple choice questions or even gamified assessments, based on curricular themes provided by the teacher.
  • Personalized mentoring: Artificial intelligence enables a much more individualized approach to teaching. By analyzing data on student performance, participation, and behavior, AI tools can identify patterns and learning gaps that would otherwise go unnoticed.

    Based on these insights, teachers can provide personalized feedback, propose specific activities for reinforcement, and even adapt the pace and teaching approach according to the needs of each student.

    This strengthens the pedagogical bond, increases student engagement and significantly improves academic results — making the learning experience more fair, human and effective.
Types of Artificial Intelligence used in Education
Types of Artificial Intelligence used in Education

Types of Artificial Intelligence used in Education

Generative AI

Tools like ChatGPT, Claude, and Dify are capable of generating textual and multimodal content (such as images and videos) on demand. They can be used to plan lessons, create teaching materials, or provide alternative explanations for tutoring.

Analytical AI

Solutions like Google Classroom with AI, MagicSchool.ai and ClassDojo monitor student interactions and performance to adapt pedagogical strategies in a personalized way.

Autonomous Educational Agents

Educators can create agents with n8n or Dify to automate tasks like reporting, performance alerts, activity delivery, and more.

AI Agents: The Future of Personalized Education

You Autonomous Agents with AI represent the next level of pedagogical innovation. They are capable of operating continuously and adaptively based on predefined commands and contextual logic.

Usage examples:

  • Tutor agent to answer students' questions via WhatsApp or Plurall;
  • Evaluation agent to generate reports per student based on performance on educational platforms;
  • Content agent who generates new material every week based on the school's curriculum.

Find out more at No Code Start Up AI Agent Manager Training

AI Tools Every Educator Needs to Know

Curipod

O Curipod is a platform that allows you to create interactive classes in just a few minutes with AI support. Teachers can enter a topic and automatically receive a class structure with texts, quizzes, polls, images and other activities. It is ideal for those looking for dynamism and more engaging interactions in the classroom.

Curipod
Curipod

Canva Magic Write

Integrated with Canva, Magic Write is an AI-powered content generator that helps educators create slides, presentations, summaries, and visual materials in record time. Simply input an idea or topic, and the tool suggests cohesive texts that are visually ready for educational use.

Canva Magic Write
Canva Magic Write

AudioPen

AudioPen automatically converts speech into text, making it ideal for educators who prefer to dictate ideas rather than type. It can be used to create lesson plans, video scripts, educational blog content, and more. It's simple, practical, and fast.

AudioPen
AudioPen

Eduaide.Ai

This tool offers over 100 resources for creating high-quality educational content. From complete lesson plans, study suggestions, personalized feedback to active methodologies — all generated with AI and available in multiple languages. Learn more about Eduardo.AI

Eduaide.Ai
Eduaide.Ai

MagicSchool.ai

Platform aimed exclusively at educators, the MagicSchool.ai centralizes the generation of lesson plans, performance reports, quizzes and various content. A true all-in-one dashboard for those who want to increase productivity in pedagogical management.

MagicSchool.ai
MagicSchool.ai

Copilot for Education (Microsoft)

O Copilot integrates with Microsoft 365, allowing teachers to automate content creation and administrative tasks. From responding to emails to creating presentations with AI, it is a powerful ally to optimize time in and out of the classroom.

Copilot for Education (Microsoft)
Copilot for Education (Microsoft)

Dify + OpenAI

Ideal for those who want to customize their own educational agents. With Dify, you connect models of the OpenAI into practical workflows — like an agent to review essays, another to grade tests, or even a bot to support students’ parents.

Dify + OpenAI
Dify + OpenAI

Read also: FlutterFlow Course for Educational Apps

Automation of pedagogical tasks: more time to teach

Tasks such as providing feedback, organizing data, sending notifications, and even correcting tests can be automated. This allows teachers to focus on human interactions, creativity, and close monitoring of students.

Solutions like Make Course (Integromat) and Xano Course can be integrated with teaching platforms to facilitate these processes.

AI FAQs for Educators

What is the best AI for teachers?

There is no single answer, as it depends on the objective. For content creation, ChatGPT and Eduaide.Ai stand out. For lesson planning, Curipod offers a ready-made structure.

For assessment, Gradescope and MagicSchool.ai are good choices. The ideal is to combine tools according to the pedagogical need.

What are the types of AI used in education?

The main types are:

  • Generative AI (such as ChatGPT and Dify), used to create texts, activities and even videos;
  • Analytical AI, which interprets student performance and behavior data;
  • Autonomous agents, who perform educational tasks without constant supervision, such as correcting tests or sending feedback.

What is the best AI website for teachers?

Platforms such as MagicSchool.ai, Eduaide.Ai and Canva Magic Write offer robust solutions for teachers. In the Brazilian ecosystem, No Code Start Up stands out with practical training focused on AI applied to education.

How can AI help teachers?

It helps by automating repetitive tasks, creating personalized content, offering real-time data analysis, and enabling more efficient classroom management. This frees up time and significantly improves the quality of teaching.

AI for Educators is a One-Way Road – And You Need to Be Prepared

AI in education is more than a trend — it’s a transformative reality. Educators who learn to integrate these technologies into their daily lives save time, increase the impact of their work, and improve the quality of teaching.

LlamaIndex is an open-source framework designed to connect large language models (LLMs) to private, up-to-date data that is not directly available in the models' training data.

The definition of LlamaIndex revolves around its function as middleware between the language model and structured and unstructured data sources. You can access the official documentation to get a detailed view of its technical features.

LlamaIndex and what it is for
LlamaIndex and what it is for

LlamaIndex what is it for?

Integration with LLMs

LlamaIndex is a tool developed to facilitate integration between large language models (LLMs) and external data sources that are not directly accessible to the model during response generation.

This integration occurs through the paradigm known as RAG (Retrieval-Augmented Generation), which combines data retrieval techniques with natural language generation.

Practical applications

The simple explanation of LlamaIndex lies in its usefulness: it transforms documents, databases and various sources into structured knowledge, ready to be consulted by an AI.

By doing so, it solves one of the biggest limitations of LLMs – the inability to access updated or private information without reconfiguration.

Using LlamaIndex with AI expands the application cases of the technology, from legal assistants to customer service bots and internal search engines.

Limitations resolved

LlamaIndex solves a fundamental limitation of LLMs: the difficulty of accessing real-time, up-to-date or private data.

Functioning as an external memory layer, it connects language models to sources such as documents, spreadsheets, SQL databases, and APIs, without the need to adjust model weights.

Its broad compatibility with formats such as PDF, CSV, SQL, and JSON makes it applicable to a variety of industries and use cases.

This integration is based on the RAG (Retrieval-Augmented Generation) paradigm, which combines information retrieval with natural language generation, allowing the model to consult relevant data at the time of inference.

As a framework, LlamaIndex structures, indexes, and makes this data available so that models like ChatGPT can access it dynamically.

This enables both technical and non-technical teams to develop AI solutions with greater agility, lower costs, and without the complexity of training models from scratch.

How to use LlamaIndex with LLM models like ChatGPT?

Also check out the N8N Training to automate flows with no-code tools in AI projects.

Usage steps

Agent and Automation Manager Training with AI It is recommended for those who want to learn how to apply these concepts in a practical way, especially in the development of autonomous agents based on generative AI.

Integrating LlamaIndex with LLMs like ChatGPT involves three main steps: data ingestion, indexing, and querying. The process starts with collecting and transforming the data into a format that is compatible with the model.

This data is then indexed into vector structures that facilitate semantic retrieval, allowing LLM to query it during text generation. Finally, the application sends questions to the model, which responds based on the retrieved data.

To connect LlamaIndex to ChatGPT, the typical approach involves using the Python libraries available in the official repository. Ingestion can be done using readers such as SimpleDirectoryReader (for PDF) or CSVReader, and indexing can be done using VectorStoreIndex.

Practical Example: Creating an AI Agent with Local Documents

Let’s walk through a practical example of how to use LlamaIndex to build an AI agent that answers questions based on a set of local PDF documents. This example illustrates the ingestion, indexing, and querying steps in more depth.

1 – Environment Preparation: Make sure you have Python installed and the necessary libraries. You can install them via pip: bash pip install llama-index pypdf

2 – Data Ingestion: Imagine you have a folder called my_documents containing several PDF files. LlamaIndex's SimpleDirectoryReader makes it easy to read these documents.

Data Ingestion
Data Ingestion


In this step, SimpleDirectoryReader reads all supported files (such as PDF, TXT, CSV) from the specified folder and converts them into Document objects that LlamaIndex can process.

3 – Data Indexing: After ingestion, documents need to be indexed. Indexing involves converting the text of documents into numerical representations (embeddings) that capture semantic meaning.

These embeddings are then stored in a VectorStoreIndex. python # Creates a vector index from # documents By default, it uses OpenAI embeddings and a simple in-memory VectorStore index = VectorStoreIndex.from_documents(docs) VectorStoreIndex is the core data structure that allows LlamaIndex to perform efficient semantic similarity searches.

When a query is made, LlamaIndex searches for the most relevant excerpts in the indexed documents, rather than performing a simple keyword search.

4 – Query and Response Generation: With the index created, you can now ask queries. as_query_engine() creates a query engine that interacts with the LLM (like ChatGPT) and the index to provide answers informed by your data.

Query and Response Generation
Query and Response Generation
  • When query_engine.query() is called, LlamaIndex does the following:
  • Converts your question into an embedding.
  • Use this embedding to find the most relevant excerpts in indexed documents (Retrieval).
  • Send these relevant excerpts, along with your question, to LLM (Generation).
  • LLM then generates a response based on the context provided by your documents.

This flow demonstrates how LlamaIndex acts as a bridge, allowing LLM to answer questions about your private data, overcoming the limitations of the model’s pre-trained knowledge.

LlamaIndex Detailed Use Cases
LlamaIndex Detailed Use Cases

Detailed Use Cases

LlamaIndex, by connecting LLMs to private, real-time data, opens up a wide range of practical applications. Let’s explore two detailed scenarios to illustrate its potential:

  1. Smart Legal Assistant:
  • Scenario: A law firm has thousands of legal documents, such as contracts, case law, opinions, and statutes. Lawyers spend hours researching specific information in these documents to prepare cases or provide advice.
  • Solution with LlamaIndex: LlamaIndex can be used to index the entire document database of the firm. An LLM, such as ChatGPT, integrated with LlamaIndex, can act as a legal assistant.

    Lawyers can ask natural language questions like “What are the legal precedents for land dispute cases in protected areas?” or “Summarize the termination clauses of contract X.”

    LlamaIndex would retrieve the most relevant excerpts from the indexed documents, and LLM would generate a concise and accurate response, citing sources.
  • Benefits: Drastic reduction in research time, increased accuracy of information, standardization of responses and freeing up lawyers for tasks of greater strategic value.
  1. Customer Support Chatbot for E-commerce:
  • Scenario: An online store receives a large volume of repetitive questions from customers about order status, return policies, product specifications, and promotions. Human support is overwhelmed, and response times are high.
  • Solution with LlamaIndex: LlamaIndex can index your store's FAQ, product manuals, return policies, (anonymized) order history, and even inventory data.

    A chatbot powered by a LLM and LlamaIndex can instantly answer questions like “What is the status of my order #12345?”, “Can I return a product after 30 days?” or “What are the specifications of smartphone X?”.

Benefits: 24/7 support, reduced support team workload, improved customer satisfaction with fast and accurate responses, and scalability of support without proportional cost increases.

What are the advantages of LlamaIndex over other RAG tools?
What are the advantages of LlamaIndex over other RAG tools?

What are the advantages of LlamaIndex over other RAG tools?

One of the main advantages of LlamaIndex is its relatively easy learning curve. Compared to solutions like LangChain and Haystack, it offers greater simplicity in implementing RAG pipelines while maintaining flexibility for advanced customizations.

Its modular architecture makes it easy to replace components, such as vector storage systems or data connectors, as project needs dictate.

LlamaIndex also stands out for its support for multiple data formats and clear documentation. The active community and constant update schedule make the framework one of the best RAG tools for developers and startups.

In comparison between RAG tools, the LlamaIndex vs Lang Chain highlights significant differences: while LangChain is ideal for complex flows and orchestrated applications with multiple steps, LlamaIndex favors simplicity and a focus on data as the main source of contextualization.

For an in-depth comparison, see this white paper from Towards Data Science, which explores the ideal usage scenarios for each tool. Another relevant source is the article RAG with LlamaIndex from the official LlamaHub blog, which discusses performance benchmarks.

We also recommend the post Benchmarking RAG pipelines, which presents comparative tests with objective metrics between different frameworks.

Get started with LlamaIndex in practice
Get started with LlamaIndex in practice

Get started with LlamaIndex in practice

Now that you understand the definition of LlamaIndex and the benefits of integrating it with LLM models like ChatGPT, you can start developing custom AI solutions based on real data.

Using LlamaIndex with AI not only increases the accuracy of responses, it also unlocks new possibilities for automation, personalization, and business intelligence.

NoCode StartUp offers several learning paths for professionals interested in applying these technologies in the real world. From Agent Training with OpenAI until the SaaS IA NoCode Training, the courses cover everything from basic concepts to advanced architectures using indexed data.

NEWSLETTER

Receive exclusive content and news for free

en_USEN
menu arrow

Nocodeflix

menu arrow

Community