ASSINATURA PRO COM DESCONTO

Hours
Minutes
Seconds

IT job market: how have no-code platforms transformed jobs?

notebook codes

We have experienced an intense digital revolution in the last ten years, from the Internet of Things to AI. And no-code is a protagonist in this transformation, allowing those who do not program to create efficient solutions for the job market.

The truth is that today there are technologies so advanced that no sci-fi film from the 1980s was able to predict them. 

With such digital transformation, the job market found itself obliged to follow these trends and we currently have a technological reality that is widespread in the corporate world. 

Clocking in virtually and collaborative spaces in the cloud are just some examples of the tools used in home office companies in different niches.

It is no longer necessary for an organization to be focused on technology sectors to be technological. 

To some extent, all companies use digital solutions, whether to organize its structures or offer services. 

Within this context, O job market in Information Technology (IT) becomes increasingly bloated and more professionals are required.

After all, have you ever wondered how these companies manage to develop so many technological solutions? 

However, there are not many qualified professionals to meet this demand. For this reason, the low-code and no-code platforms emerge to solve this problem once and for all. 

These solutions offer affordable and simple programs that allow you to create applications, automate processes, provide reports and dashboards In real time without the need for in-depth knowledge of programming languages.

Are you interested in the subject and want to know how no-code platforms transformed jobs in the Information Technology field?

Stay with us in this article, as we will discuss this broad job market and show you what you need to be successful as a no-code programmer.

programming man

How is the IT job market?

IT is the acronym for Information Technology, an area that involves a series of activities related to technology, such as databases, hardware, softwares and networks (domestic or business), used to handle information.

In general, the profession is responsible for helping companies work with their data and optimize their processes. 

Some of the main functions of a professional in this area include:

  • Technical support;
  • Schedule;
  • E-commerce development;
  • Database administration;
  • Security.

The Information Technology sector is present in most companies and is essential to maintaining their operational processes. It is an area in constant growth, even with global crises in the job market.

There are several job possibilities for IT professionals, they can work in:

  • Financial sectors;
  • Companies specializing in technology (such as start-ups);
  • Public and private organizations;
  • Banks and insurance companies;
  • Telephone operators;
  • Industries.
  • Hospitals and clinics.

There is a great demand for qualified professionals in different sectors, however There are not enough people to fill these positions.

According to a survey carried out by BrazilLAB and Fundação Brava, in partnership with the Center for Public Impact (CPI), the deficit of professionals in the area should continue to grow and could reach the number of more than 300 thousand people by the year 2024, in 2025 this gap still persists. 

Furthermore, it is estimated that by 2024 more than 65% of the apps corporate will be done via no-code or low-code according to Gartner”.

It is no surprise that the IT profession was one of the highest paid in the second quarter of 2023, according to the Brazilian Institute of Economics of Fundação Getúlio Vargas.

What is the future of the IT job market?

We've already talked about what the IT job market is like today, but what are the main trends for the future of programming? Keep reading to find out! 

In the business context, the revolution of new technologies has created a new type of consumer: more demanding.

Therefore, a culture of speed began to accompany this increase in demand and need for more agile and efficient processes

Information is the most precious data in this new form of society, it is almost infinite and an efficient organization in this case is essential.

Regarding data processing, global consultancy Gartner has identified several rising technological trends, see some of them: 

  • Data mesh;
  • Cyber security mesh;
  • Cloud-native platforms.

Although this is almost common sense in the IT field, few professionals have enough experience to implement these tools.

This is where no-code technology stands out, as it allows people without technical programming knowledge to build and implement new solutions effectively. 

What are the benefits of using no-code for the IT job market?

no-code technology is based on a basic premise: ensure the production of technologies in an accessible and simple way. In it, softwares are created through an interface with models that bring together several actions. 

These platforms are widely used by micro and small entrepreneurs, but are becoming increasingly widespread among large companies such as: 

  • Spotify;
  • Amazon;
  • Google;
  • Goal.

Do you want to know the main benefits of no-code and why these tech giants are implementing it? Continue reading. 

programming-codes

Reduction of steps and time worked

With the no-code, systems and tasks can be automated by applications created from templates ready. This way, IT professionals are free to focus on activities that require their specific skills.

This adds a great deal of autonomy to the company's teams and helps the overall efficiency of the business.

Best value for money

Companies can save a lot when they don't need to hire highly specialized developers or purchase third-party applications.

The no-code development allows internal teams create and update technological solutions quickly and efficiently.

Furthermore, systems simplification and data integration facilitate the management and ongoing maintenance of applications, which reduces the time and resources needed to ensure operations.

High efficiency

Another benefit is the increase in internal productivity, since excessive dependence on the IT department is reduced, as we mentioned earlier.

This way, employees in each department can meet their own technological needs.

This autonomy eliminates bottlenecks that often arise when IT requests need to be approved and fulfilled.

With the ability to develop their own solutions or adjust existing systems, employees can act more independently and direct the progress of their tasks.

What are the skills of the no-code developer in the IT job market?

Now that you understand how no-code can revolutionize the IT market, you may be wondering what it takes to enter this field. We have separated some essential skills for developing no-code in the job market, see: 

Recognize needs

What are the real user needs and how can they be solved through programming in no-code environments?

A good no-code developer is able to identify a demand – in society, in a company or in the IT market – and create, with just a few commands, something that can revolutionize the entire technology sector. This is the professional who comes out ahead.

Enjoy studying

To become a successful no-code developer, you need to enjoy learning. Although it is easier than traditional programming, it requires knowledge of new platforms, coding styles, and more.

Being self-taught can give you many competitive advantages, use the internet to your advantage and invest in no-code courses accessible. 

Work with little management

Developers work with little supervision, so you need to be very organized and become your own boss. This means that you need to be your own motivator and invest in effective planning of your projects. 

It is necessary to know how to work independently and build creative solutions for the business routine before ideas come from leadership.

Knowing how to receive criticism

Receiving constructive criticism is part of every worker's routine and for no-code developers this is no different. In fact, your client or supervisor may have criticisms that lead to building better softwares. 

Don't dismiss opinions and learn to listen and interpret the needs of others in order to implement their requests efficiently on apps and websites.

“Sell the fish”

Last but not least, learn how to sell your idea. Not everyone will understand technical terms or the need for a developer on the team.

It's your job explain the benefits of your work, what you can do for the company or client.

How to work with no-code in the IT department?

To implement no-code in the IT department, you first need to follow some tips:

Value automated processes

The first step to implementing a no-code developer in the IT department is understand and show the benefits of codeless programming.

You can start by showing interest and discussing your ideas with the person responsible for the sector.

Get to know the no-code platform

Discover no-code platforms of different types, see which big techs use and start there. Seek knowledge in free training or courses that fit your budget. One FlutterFlow course could be a good choice.

Keep an eye out as many software vendors offer specific training programs for no-code developers. There are also free videos and tutorials that can help you at the beginning of your journey.

Present ideas no-code

The next step is to share your ideas with colleagues and superiors within the organization. Be sure to show in a practical way how no-code can be applied to improve efficiency, optimize processes and generate value for the company.

What is the salary of no-code developer? 

What is the salary of a developer in code?

According to the Código Fonte 2023 survey, the average salary of a low-code developer, which includes no-code, in Brazil is between R$ 3,500 and R$ 9,000.

In addition to receiving formal pay, no-code developers can venture out as freelancers or individual microentrepreneurs (MEI).

Many move to the mobile environment and discover how to make money creating apps.

So, do you think it’s worth starting to invest in the area? 

No-Code Start-Up helps you on this journey

Now that you know how hot the IT job market is for no-code programmers, how about investing in this sector?

At No-Code Start-Up you will find courses to create incredible applications, startups and e-commerces without using a line of code.

Discover our Bubble training and see how easy it is to be a no-code developer.

Don't miss the opportunity to learn from No-Code Start-Up! 

Complementary courses:

org

Sign up for Free N8N course

The most comprehensive free N8N course you will ever take. Learn how to create your first AI Agent and automation from scratch.

Neto Camarano

Neto specialized in Bubble due to the need to create technologies quickly and cheaply for his startup, and since then he has been creating systems and automations with AI. At the Bubble Developer Summit 2023, he was listed as one of the world's leading Bubble mentors. In December, he was named the top member of the global NoCode community at the NoCode Awards 2023 and won first place in the best app competition organized by Bubble itself. Today, Neto focuses on creating AI Agent solutions and automations using N8N and OpenAI.

Also visit our Youtube channel

Learn how to create AI Applications, Agents and Automations without having to code

More Articles from No-Code Start-Up:

Straight talk: 2026 will be a game-changer for those who want to make money with... AI (Artificial Intelligence).
Opportunities exist, but not all are worth your time, and some promise much more than they deliver.

In this article, I've organized the main ways to monetize AI into clear categories, with pros, cons, and the actual level of effort involved.
The idea here is to help you choose a conscious path, without falling into illusory shortcuts.

AI applied to the workplace as an employee (career and security)

If you already work for a company, applying AI to your daily routine is one of the safest ways to start.
You learn, experiment, and build real projects without sacrificing financial stability.

It's possible to create internal automations, agents, and even softwares that increase efficiency, reduce costs, and generate a direct impact on the business.
When that happens, recognition tends to follow — provided you generate real results, and not just "use AI for the sake of using it".

AI applied to the workplace as an employee (career and security)

The key point to understand is that you are not building something that is your own.
Even so, for learning and professional growth, this is one of the best entry points.

AI for managers and business owners

AI for managers and business owners

For managers and business owners, AI perhaps represents the biggest financial opportunity of 2026.
Most companies are still lost, lacking method, strategy, and clarity on how to apply AI to their processes.

When applied correctly, AI improves performance, reduces bottlenecks, and accelerates results in sales, customer service, and operations.
The challenge lies in the excess of tools and the lack of a clear methodology for the team.

Whoever manages to organize this chaos and apply AI with a focus on results will capture a lot of value.
There's a lot of money on the table here, really.

AI-powered service delivery: an overview

AI-powered service delivery: an overview.

THE AI-powered service provision It's one of the fastest ways to generate income.
You solve real business problems using automation, agents, and intelligent systems.

This model unfolds into freelancer, freelancer for international clients, agency, and consultancy.
Each one has a different level of effort, return, and complexity, but all require execution.

This is where many people really start to "make the wheels turn.".

Freelancer working abroad (earning in dollars)

Freelancer working abroad (earning in dollars)

Freelancing for international companies is, without exaggeration, one of the best options for making money with AI.
Earning in dollars or euros completely changes the game.

You're still trading time for money, but with a much greater return.
The biggest challenge is the beginning: getting the first project and dealing with the language, even at a basic level.

After the first client arrives, referrals start to come in.
For those who want quick results and are willing to sell their own service, this path is extremely compelling.

Creating an AI agency

Creating an AI agency

AI agencies are the natural evolution of freelancing.
Here, you scale people, projects, and revenue.

The market is still immature; many people do everything wrong, and this creates opportunities for those who do the basics well.
You can close deals, build teams, and deliver complete solutions with AI.

The challenge then becomes management: people, deadlines, processes, and quality.
Even so, by 2026, it's one of the fastest ways to consistently monetize AI.

👉 Join the AI Coding Training Learn how to create complete prompts, automations, and AI-powered applications—going from scratch to real-world projects in just a few days.

AI consulting for businesses

AI consulting for businesses

Consulting is an extremely lucrative model, but It's not a starting point..
It requires practical experience, process understanding, and diagnostic skills.

The financial return is usually high relative to the time invested.
On the other hand, you need to have authority, a track record, and a real portfolio of projects.

For those who have experience in agencies, product development, or large-scale implementations, this is an excellent career path.
For beginners, it doesn't make sense yet.

Founder: Creating AI-powered apps

Founder creating AI-powered apps

Creating AI-powered apps has never been more accessible.
Tools like Lovable, Cursor and integrations with Supabase They make this possible even without a technical background.

The financial potential is high, but so is the difficulty.
Creating technology is no longer the differentiating factor — today, the challenge lies in marketing, distribution, finance, and validation.

It's a path of great learning, but with a high error rate at the beginning.
It's worth it if you're willing to make mistakes, learn, and iterate.

Micro SaaS with AI (pros and cons)

Micro SaaS with AI (pros and cons)

O Micro SaaS It solves a specific problem for a specific niche.
This reduces competition and increases the clarity of the offer.

It doesn't scale like a traditional SaaS, but it can generate a consistent and sustainable income.
The challenge remains the same: marketing, sales, and management.

It's not easy, it's not quick, but it can be a great side business.
Here, I classify it as an "okay" path, as long as you have patience.

Traditional SaaS with AI

Traditional SaaS with AI

O SaaS traditional It has greater potential for scaling, but also greater competition.
You solve broader problems and compete in larger markets.

This requires more time, more emotional capital, and greater execution capacity.
Therefore, the Micro SaaS often ends up being a smarter choice at the beginning.

SaaS is powerful, but it's definitely not the easiest path.

AI-powered education: courses and digital products

AI-powered education courses and digital products

AI-powered education is extremely scalable.
Once the product is ready, delivery is almost automatic.

The problem is time.
Building an audience, producing content, and establishing authority takes months—sometimes years.

Here in NoCode Startup, It took us quite a while for the project to become truly financially relevant.
It works, but it requires consistency and a long-term vision.

AI Communities

AI Communities

Communities generate networking, repeat business, and authority.
But they also require constant presence, events, support, and a lot of energy.

It's a powerful, yet laborious model.
I don't recommend it as a first step for those who are just starting out.

With experience and an audience, it can become an incredible asset.

Templates, ebooks, and simple products powered by AI.

Templates, ebooks, and simple products with AI.

Templates and ebooks are easy to create and scale.
That's precisely why competition is fierce and perceived value tends to be low.

Today, if something can be solved with a question in ChatGPT, It's difficult to sell only information.
These products work best as a complement, not as a main business.

To make real money with AI, deliver execution and result That's what makes the difference.

Next step

Next step

There's no such thing as easy money with AI.
What exists is More access, more tools, and more possibilities. for those who perform well.

The most solid paths involve providing services, well-positioned products, and building authority.
The easier something seems, the greater the competition tends to be.

If you want to learn AI in a practical, structured way, focused on real-world projects, check out... AI Coding Training.

Technology is undergoing a historic transition: from passive softwares to autonomous systems. Understanding the types of AI agents It's about discovering tools capable of perceiving, reasoning, and acting independently to achieve complex goals, without the need for micromanagement.

This evolution has transformed the market. For professionals who want to lead the AI infrastructure, Mastering the taxonomy of these agents is no longer optional.

It's the exact competitive differentiator between launching a basic chatbot or orchestrating a complete digital workforce.

In this definitive guide, we'll dissect the anatomy of agents, exploring everything from classic classifications to modern LLM-based architectures that are revolutionizing the No-Code and High-Code worlds.

Diagram illustrating the perception, reasoning, and action loop of different types of AI agents in a digital environment.
Diagram illustrating the perception, reasoning, and action loop of different types of AI agents in a digital environment.

What exactly defines an AI agent?

Before we explore the types, it's crucial to draw a clear line in the sand. An artificial intelligence agent is not merely a language model or a machine learning algorithm.

The most rigorous definition, accepted both in academia and industry, as in the course Stanford CS221, describes an agent as a computational entity situated in an environment, capable of perceiving it through sensors and acting upon it through actuators to maximize its chances of success.

The Crucial Difference: AI Model vs. AI Agent

Many beginners confuse the engine with the car.

  • AI model (ex: GPT-4, Llama 3): It's the passive brain. If you don't send a prompt, it does nothing. It has knowledge, but no agency.
  • AI Agent: It's the complete system. It has the model as its core reasoning tool, but it also has memory, access to tools (databases, APIs, browsers), and, crucially, a goal.

An agent uses the model's predictions to make sequential decisions, manage states, and correct the course of its actions.

It's the difference between asking ChatGPT "how to send an email" (Template) and having a software that autonomously writes, schedules, and sends the email to your contact list (Agent).

The 5 Classic Types of AI Agents

To build robust solutions, we need to revisit the theoretical foundation established by Stuart Russell and Peter Norvig, the fathers of modern AI.

The complexity of an agent is determined by its ability to handle uncertainties and maintain internal states.

Here are the 5 types of AI agents hierarchical structures that form the basis of any intelligent automation:

1. Simple Reactive Agents

This is the most basic level of intelligence. Simple reactive agents operate on the "if-then" principle.

They only respond to the current input, completely ignoring history or past states.

  • How it works: If the sensor detects "X", the actuator does "Y".
  • Example: A smart thermostat or a basic spam filter. If the temperature exceeds 25ºC, it turns on the air conditioning.
  • Limitation: They fail in complex environments where the decision depends on a historical context.

2. Model-Based Reactive Agents

Taking it a step further, these agents maintain an internal state — a kind of short-term memory.

They don't just look at the "now," but consider how the world evolves independently of their actions.

This is vital for tasks where the environment is not fully observable. For example, in a self-driving car, the agent needs to remember that there was a pedestrian on the sidewalk 2 seconds ago, even if a truck momentarily blocked its view.

3. Goal-Based Agents

True intelligence begins here. Goal-oriented agents don't just react; they plan.

They have a clear description of a "desirable" state (the goal) and evaluate different sequences of actions to achieve it.

This introduces search and planning capabilities. If the goal is to "optimize the database," the agent can simulate various paths before executing the final command, something essential for those working with... AI for data analysis.

4. Utility-Based Agents

Often, achieving the goal is not enough; it is necessary to achieve it in the best possible way. Utility-based agents use a utility function (score) to measure preference between different states.

If a logistics agent aims to deliver a package, the utility agent will calculate not only the route that gets there, but the fastest route, using the least amount of fuel and with the greatest safety. It's about maximizing efficiency.

5. Agents with Learning

At the top of the classic hierarchy are the agents capable of evolving. They have a learning component that analyzes feedback from their past actions to improve their future performance.

They start with basic knowledge and, through exploration of the environment, adjust their own decision rules. This is the principle behind advanced recommendation systems and adaptive robotics.

Infographic comparing the complexity and autonomy of five classic AI agent types, from simple reactive to learning agents.
Infographic comparing the complexity and autonomy of five classic AI agent types, from simple reactive to learning agents.

What are generative agents based on LLMs? 

Classical taxonomy has evolved. With the arrival of the Big Language Models (LLMs), a new category has emerged that dominates current discussions: Generative Agents.

In these systems, the LLM acts as the central controller or "brain," using its vast knowledge base to reason about problems that were not explicitly programmed, as detailed in the seminal paper on... Generative Agents.

Reasoning Frameworks: ReAct and CoT

For an LLM to function as an effective agent, we utilize techniques of prompt engineering advanced principles that structure the model's thinking:

  1. Chain-of-Thought (CoT): The agent is instructed to break down complex problems into intermediate steps of logical reasoning ("Let's think step by step"). Research indicates that this technique... It stimulates complex reasoning. in large models.

  2. ReAct (Reason + Act): This is the most popular architecture currently. The agent generates a thought (Reason), executes an action on an external tool (Act), and observes the result (Observation). This loop, described in the paper... ReAct: Synergizing Reasoning and Acting, This allows it to interact with APIs, read documentation, or execute Python code in real time.

Tools like AutoGPT and BabyAGI They popularized the concept of autonomous agents that create their own task lists based on these frameworks.

You can explore the original code of AutoGPT on GitHub or from BabyAGI to understand the implementation.

Tip in Specialist: For those who wish to delve deeper into the technical design of these systems, our AI Coding Training It explores exactly how to orchestrate these frameworks to create intelligent softwares.

Architectures: Single Agent vs. Multi-Agent Systems

When developing a solution for your company, you will face a critical architectural choice: should you use a super agent that does everything or multiple specialists?

What is the difference between Single Agent and Multi-Agent Systems?

The difference lies in form of organization of intelligence.
One Single Agent It concentrates all the logic and execution into a single entity, making it simpler, faster, and easier to maintain, ideal for straightforward tasks with a well-defined scope.

Already the Multi-Agent Systems They distribute the work among specialized agents, each responsible for a specific function.

This approach increases the ability to solve complex problems, improves the quality of results, and facilitates the scalability of the solution.

When should you use a Single Agent?

A single agent is ideal for linear, narrow-scope tasks. If the goal is "summarize this PDF and send it by email," a single agent with the right tools is efficient and easy to maintain.

Latency is lower and development complexity is reduced.

The Power of Multi-Agent Orchestration

For complex problems, the industry is migrating to Multi-Agent Systems (MAS). Imagine a digital agency: you don't want the copywriter to do the design and approve the budget.

Recent technical discussions, such as this one Single vs Multi-Agent debate, They show that specialization trumps generalization.

In a multi-agent architecture, you create:

  • A "Researcher" agent that searches for data on the web.
  • An "Analyst" agent that processes the data.
  • An agent called "Writer" who creates the final report.
  • A "Critical" agent who reviews the work before delivery.

This specialization mimics human organizational structures and tends to produce higher quality results.

Modern frameworks facilitate this orchestration, such as LangGraph for complex flow control, the CrewAI for teams of role-based agents, and even lighter libraries such as Hugging Face smolagents.

Visual representation of a multi-agent system where specialized agents collaborate to solve a complex business problem.
Visual representation of a multi-agent system where specialized agents collaborate to solve a complex business problem.

Practical Applications and No-Code Tools

The theory is fascinating, but how does this translate into real value? Different types of AI agents are already operating behind the scenes of large, agile startups operations.

Coding and Development Agents

Autonomous agents such as Devin or open-source implementations such as OpenDevin They utilize planning architectures and tools to write, debug, and deploy entire codebases.

In the No-Code environment, tools such as FlutterFlow and Bubble They are integrating agents that assist in building complex interfaces and logic using only text commands.

Data Analytics Agents

Instead of relying on analysts to generate manual SQL reports, utility- and goal-oriented agents can connect to your data warehouse, formulate queries, analyze trends, and generate proactive insights.

This democratizes access to high-level data.

Solutions for Businesses

For the corporate sector, the implementation of AI-powered automation solutions It focuses on operational efficiency.

Customer service agents (Customer ExperienceAgents who not only answer questions but also access the CRM to process reimbursements or change plans are examples of goal-oriented agents that generate immediate ROI.

Companies like Zapier and the Salesforce They already offer dedicated platforms for creating these corporate assistants.

Interface of a business dashboard displaying performance metrics optimized by autonomous AI agents.
Interface of a business dashboard displaying performance metrics optimized by autonomous AI agents.

Frequently Asked Questions about AI Agents

Here are the most common questions we receive from the community, which dominate searches on Google and in forums like... Reddit:

What is the difference between a chatbot and an AI agent?

A traditional chatbot typically follows a rigid script or simply responds based on trained text.

An AI agent has autonomy: it can use tools (such as a calculator, calendar, email) to perform real-world tasks, not just converse.

What are autonomous agents?

These are systems that can operate without constant human intervention. You define a broad objective (e.g., "Discover the 5 best SEO tools and create a comparison table"), and the autonomous agent decides which websites to visit, what data to extract, and how to format the results on its own.

Do I need to know how to program to create an AI Agent?

Not necessarily. While knowledge of logic is vital, modern platforms and No-Code frameworks allow the creation of powerful agents through visual interfaces and natural language.

For advanced customizations, however, understanding the logic of AI Coding That's a huge advantage.

Futuristic concept of human-AI collaboration, where developers orchestrate multiple types of AI agents in a digital work environment.
Futuristic concept of human-AI collaboration, where developers orchestrate multiple types of AI agents in a digital work environment.

The Future is Agentic — And It Requires Architects, Not Just Users

Understanding the types of agents AI It's the first step in moving from being a consumer of technology to being a creator of solutions.

Whether it's a simple reactive agent for email triage or a complex multi-agent system for managing e-commerce operations, digital autonomy is the new frontier of productivity.

The market is no longer just looking for those who know how to use ChatGPT, but those who know... designing workflows that ChatGPT (and other models) will execute.

If you want to move beyond theory and master building these tools, the ideal next step is to learn about our... AI Agent Manager Training. The era of agents has only just begun — and you could be in charge of it.

If you are looking to create more advanced projects, with better security, greater scalability, and more professionalism using the tools of Vibe Coding, This guide is for you.

In this article, I've outlined three very important tips that will guide you from beginner to advanced and truly professional projects.

We need to go beyond a simple visual interface and build a solid architecture. Let's go!

Why combine Lovable, N8N, and Supabase?

Tip 1: Starting by focusing on the main pain point

best ai app builder vibe coding platform​

My first piece of advice is to start with Lovable, but focus on simpler, more direct projects, addressing the pain points you want to solve with technology.

Be a SaaS, one Micro SaaS Whether it's an app or an application, find out what the main pain point is for your end user.

It's crucial to avoid the mistake of including "a million features, a million metrics," and complex business rules right from the start. This confuses the user and will almost certainly cause the project to fail.

Focus on creating in Lovable He creates very beautiful and visually appealing apps interfaces. Solve the main pain point first, and only then can you make the project more complex.

Case

best vibe coding apps​ (2)

A very interesting example, and one of Lovable's main case studies, is... Plink.

Basically, it's a platform where women can check if their boyfriend has had any run-ins with the police or has a history of aggression.

The creator, Sabrina, became famous because she created the app without knowing any code, focused on the main pain point, and the app simply "exploded.".

In just two months, the project was already projecting $2.2 million in revenue. She validated the idea on Lovable, proving that market focus is what makes a project successful.

Another example is an AI agent management application. We always start with the interface in Lovable and only then migrate the project to [the other platform/tool]. Cursor to make it more advanced and complex.

Master Supabase, the heart of advanced projects.

top ai app builder with vibe coding​

The second tip, and the most important for security and scalability, is to thoroughly learn the Supabase component. This encompasses data modeling and all back-end functions.

To create AI projects, you'll need the front-end (the user interface, like in Lovable) and the back-end (the intelligence, data, security, and scalability).

The back-end uses the N8N for automation and AI agents, but it is the Supabase which will be the heart of your project.

If you want a highly secure and scalable project, the secret is to master Supabase.

Courses for Beginners:

The great advantage is that, if the interface created by Lovable has a problem, since you already have the core of your project well structured, you can simply remove Lovable and plug the data into another interface, such as Cursor.

You don't need to be a technician, but you need to understand the... MacroHow data modeling, security (RLS), and data connection work.

Understanding these basics is crucial for you to be able to request and manage AI effectively. For this, I recommend our course. Supabase Course in the PRO subscription.

Tip 3: When to move on to Cursor/AI-powered code editors

best vibe coding apps

The third tip is about taking the next step: migrating to AI-powered code tools and editors, such as... Cursor or Cloud Code.

It's very important to start with Lovable in a simplified way, but if you want to make your project more advanced, robust, and scalable, you'll need to combine the organization of your back-end in Supabase with the greater control offered by these tools.

However, it is essential to understand that knowing well the Supabase It's a prerequisite before jumping into the... Cursor, Because you need to have the database and architecture very well organized.

For complex projects, this union is key to having complete control over the code and structure.

Get to know the AI Coding TrainingMaster prompt creation, build advanced agents, and launch complete applications in record time.

en_USEN
menu arrow

Nocodeflix

menu arrow

Community